

# Fiber Optic GBIC CWDM DFB 1.25G Lightwave Transceiver

Data Sheet

**OGB3356-XX** 



The OGB3356-XX transceiver module operates wavelengths of 1470-1610 nm and at 1.25 Gb/s.

#### **Features**

- Hot-pluggable
- Single +3.3 V to +5.0 V supply
- SC duplex interface, singlemode fiber
- SCA-2 Host connector
- 40 km link distance
- CWDM application
- 1310nm uncooled DFB laser diode
- Low Power Dissipation
- Metal enclosure, low EMI
- Available in wavelengths of 1470, 1490, 1510, 1550, 1570, 1590, and 1610nm
- IEEE 802.3z Gigabit Ethernet compliant
- Fiber Channel compliant
- SFF-8053 Gigabit Interface Converter (GBIC) Specification compliant

### **Applications**

- Telecommunications and Data Communications system networks
- Router/Server Interface
- Distributed Multi-processing
- Switch-to-switch Interface
- High-speed I/O for File Server

### Description

The OGB3356-XX transceiver provides signal conversion and processing for serial optical data communication applications. It operates over singlemode fiber by converting lightwave information into an electrical signal and vice versa at a data rate of 1.25 Gb/s.

The Gigabit singlemode transceiver is a single unit comprised of a transmitter, a receiver, and a duplex SC receptacle. The high-speed uncooled DFB laser diode and photodiode are provided as a light source and a detector, respectively. This transceiver features hot-pluggable function and is specially developed for distances of up to 40 km.

This dual-fiber connector transceiver is designed for use telecom and datacom networking systems applications at 1.25 Gb/s from a single power supply (+3.3 V to +5.0 V).

### Serial Identification (EEPROM)

A GBIC transceiver having module definition 4 provides access to sophisticated identification information that describes the GBIC transceiver's capabilities, standard interface, manufacturer and other information. An EEPROM containing the detailed product information for the host equipment is accessed by the 2-wire serial CMOS EEPROM protocol of the ATMEL AT24C01A. See GBIC specification (SFF-8053) for detailed description.

### Safety

#### **Laser Compliance Statement**

The OGB3356-XX is classified as a Class I Laser Product. It complies with IEC 60825-1 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated under recommended operating conditions. Because the transceiver is designed to be inherently eye safe, it does not require open fiber control thus eliminating complex electronics or mechanics.

Caution - use of device other than those specified herein may result in hazardous laser radiation exposure or other damage. Please embrace all customary precautions and discretion while handling this device.

### **Performance Specifications**

### **Absolute Maximum Ratings**

Stresses in excess of the absolute maximum ratings can cause damage to the optical device. Operations of the optical device are suggested to remain within the recommended operating conditions. Exposure to the absolute maximum ratings for extended periods can adversely affect device reliability.

| Parameter            | Symbol          | Minimum | Maximum         | Unit |
|----------------------|-----------------|---------|-----------------|------|
| Storage Temperature  | Ts              | -40     | +85             | °C   |
| Power Supply Voltage | V <sub>cc</sub> | -0.5    | 6.0             | V    |
| Input Voltage        | V <sub>IN</sub> | -0.5    | V <sub>cc</sub> | V    |
| Relative Humidity    | RH              | 5       | 95              | %    |

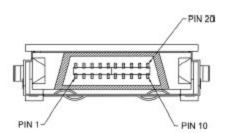
### **Recommended Operating Conditions**

| Parameter             | Symbol            | Minimum | Typical | Maximum | Unit |
|-----------------------|-------------------|---------|---------|---------|------|
| Operating Temperature | T <sub>OP</sub>   | 0       |         | 70      | °C   |
| Supply Voltage        | V <sub>cc</sub>   | 3.1     |         | 5.25    | V    |
| Supply Current (3.3V) | $I_{TX} + I_{RX}$ |         |         | 300     | mA   |
| Supply Current (5V)   | $I_{TX} + I_{RX}$ |         |         | 350     | mA   |

### Transmitter Electro-Optical Interface ( $V_{CC} = 3.1V$ to 5.25V, $T_A = 0 \sim 70$ °C)

| Parameter                   | Symbol                          | Minimum | Typical | Maximum   | Unit  |
|-----------------------------|---------------------------------|---------|---------|-----------|-------|
| Optical Output Power        | Po                              | -5      | -2.5    | 0         | dBm   |
| Optical Extinction Ratio    | Er                              | 9       |         |           | dB    |
| Center Wavelength           | λ <sub>C</sub>                  | λς-6    | λς      | λc+7      | nm    |
| Spectral Width (-20dB)      | Δλ                              |         |         | 1         | nm    |
| Side Mode Suppression Ratio | SMSR                            | 30      |         |           | dB    |
| Rise Time/ Fall Time        | t <sub>R</sub> / t <sub>F</sub> |         |         | 260       | ps    |
| Relative Intensity Noise    | RIN                             |         |         | -120      | dB/Hz |
| Total Jitter                | TJ                              |         |         | 227       | ps    |
| Output Eye                  |                                 |         |         | Compliant |       |
|                             |                                 |         |         | with      |       |

|                               |                 |     | IEEE802.3       |    |
|-------------------------------|-----------------|-----|-----------------|----|
| Differential Data Input Swing | V <sub>IN</sub> | 650 | 1860            | mV |
| Transmit Fault Output - LOW   | Tx_Fault        | 0.0 | 0.5             | ٧  |
| Transmit Fault Output - HIGH  | Tx_Fault        | 2.4 | V <sub>cc</sub> | С  |


### Receiver Electro-Optical Specifications (V<sub>CC</sub> = 3.1V to 5.25V, $T_A$ = 0 ~ 70 °C)

| Symbol              | Minimum                                                                                                                                                                             | Typical                                                                                                                                     | Maximum                                                                                                                                          | Unit                                                                                                                                                                                                                                                                            |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $P_{IN}$            | -3                                                                                                                                                                                  |                                                                                                                                             |                                                                                                                                                  | dBm                                                                                                                                                                                                                                                                             |
| P <sub>IN</sub>     |                                                                                                                                                                                     | -26                                                                                                                                         | -23                                                                                                                                              | dBm                                                                                                                                                                                                                                                                             |
|                     |                                                                                                                                                                                     |                                                                                                                                             |                                                                                                                                                  |                                                                                                                                                                                                                                                                                 |
| $\lambda_{C}$       | 1260                                                                                                                                                                                |                                                                                                                                             | 1610                                                                                                                                             | Nm                                                                                                                                                                                                                                                                              |
| ORL                 | 12                                                                                                                                                                                  |                                                                                                                                             |                                                                                                                                                  | dB                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                     |                                                                                                                                             | 1500                                                                                                                                             | MHz                                                                                                                                                                                                                                                                             |
|                     |                                                                                                                                                                                     |                                                                                                                                             |                                                                                                                                                  |                                                                                                                                                                                                                                                                                 |
| $P_A$               | -35                                                                                                                                                                                 |                                                                                                                                             |                                                                                                                                                  | dBm                                                                                                                                                                                                                                                                             |
| $P_D$               |                                                                                                                                                                                     |                                                                                                                                             | -23                                                                                                                                              | dBm                                                                                                                                                                                                                                                                             |
| $V_{OUT}$           | 370                                                                                                                                                                                 |                                                                                                                                             | 2000                                                                                                                                             | mV                                                                                                                                                                                                                                                                              |
| RX_LOS <sub>L</sub> | 0                                                                                                                                                                                   |                                                                                                                                             | 0.5                                                                                                                                              | V                                                                                                                                                                                                                                                                               |
|                     |                                                                                                                                                                                     |                                                                                                                                             |                                                                                                                                                  |                                                                                                                                                                                                                                                                                 |
| RX_LOS <sub>H</sub> | 2.4                                                                                                                                                                                 |                                                                                                                                             | $V_{cc}$                                                                                                                                         | V                                                                                                                                                                                                                                                                               |
|                     |                                                                                                                                                                                     |                                                                                                                                             |                                                                                                                                                  |                                                                                                                                                                                                                                                                                 |
|                     | $\begin{array}{c} P_{\text{IN}} \\ P_{\text{IN}} \\ \\ \lambda_{\text{C}} \\ \\ ORL \\ \\ \\ P_{\text{A}} \\ \\ P_{\text{D}} \\ \\ V_{\text{OUT}} \\ \\ RX\_LOS_{L} \\ \end{array}$ | P <sub>IN</sub> -3 P <sub>IN</sub> λ <sub>C</sub> 1260 ORL 12  P <sub>A</sub> -35 P <sub>D</sub> V <sub>OUT</sub> 370 RX_LOS <sub>L</sub> 0 | P <sub>IN</sub> -3 P <sub>IN</sub> -26  λ <sub>C</sub> 1260 ORL 12  P <sub>A</sub> -35 P <sub>D</sub> V <sub>OUT</sub> 370 RX_LOS <sub>L</sub> 0 | P <sub>IN</sub> -3         P <sub>IN</sub> -26       -23         λ <sub>C</sub> 1260       1610         ORL       12       1500         P <sub>A</sub> -35       -23         P <sub>D</sub> -23         V <sub>OUT</sub> 370       2000         RX_LOS <sub>L</sub> 0       0.5 |

### Timing Parameters for GBIC Management ( $V_{CC}$ = 3.1V to 5.25V, $T_A$ = 0 ~ 70 °C)

| Parameter                         | Symbol                | Minimum | Typical | Maximum | Unit |
|-----------------------------------|-----------------------|---------|---------|---------|------|
| Tx_Disable Assert Time            | t_off                 |         |         | 10      | μs   |
| Tx_Disable Negate Time            | t_on                  |         |         | 1       | ms   |
| Time to initialize, include reset | t_init                |         |         | 300     | ms   |
| of Tx_Fault                       |                       |         |         |         |      |
| Tx_Fault from fault to assertion  | t_fault               |         |         | 100     | μs   |
| Tx_Disable time to start reset    | t_reset               | 10      |         |         | μs   |
| Receiver Loss of Signal Assert    | t <sub>ARX_LOS</sub>  |         |         | 100     | μs   |
| Time (off to on)                  |                       |         |         |         |      |
| Receiver Loss of Signal Assert    | t <sub>D,RX_LOS</sub> |         |         | 100     | μs   |
| Time (on to off)                  | _                     |         |         |         |      |

## Pin Assignment and Plug-in Sequence<sup>1</sup> (1-Gnd and Signal; 2-Power)

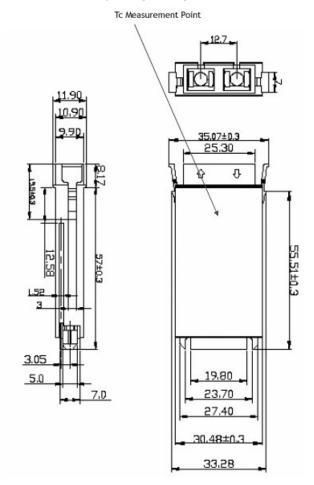


Notes:
1. With BER less than 1x10<sup>-12</sup>.

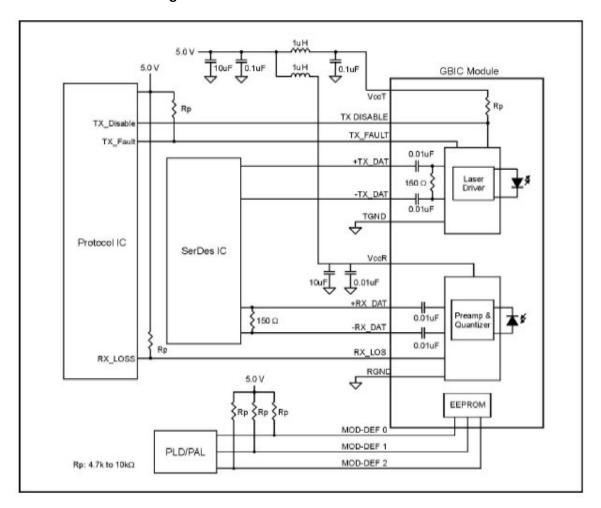
#### **OGB3356-XX GBIC TRANSCEIVER DATA SHEET**

| Pin No. | Name       | Description                                | Input/<br>Output | Notes |
|---------|------------|--------------------------------------------|------------------|-------|
| 1       | Rx_LOS     | Receiver Loss of Signal                    | OUT              | 5     |
| 2       | RGND       | Receiver Ground                            |                  | 1     |
| 3       | RGND       | Receiver Ground                            |                  | 1     |
| 4       | MOD-DEF 0  | TTL LOW                                    | OUT              | 4     |
| 5       | MOD-DEF 1  | SCL Serial Clock Signal                    | IN               | 4     |
| 6       | MOD-DEF 2  | SDA Serial Clock Signal                    | IN/ OUT          | 4     |
| 7       | Tx_Disable | Transmitter Disable                        | IN               | 3     |
| 8       | TGND       | Transmitter Ground                         |                  | 1     |
| 9       | TGND       | Transmitter Ground                         |                  | 1     |
| 10      | Tx_Fault   | Transmitter Fault Indication               | OUT              | 2     |
| 11      | RGND       | Receiver Ground                            |                  | 1     |
| 12      | -Rx_DAT    | Receiver Data Differential PECL ac-coupled | OUT              |       |
| 13      | +Rx_DAT    | Receiver Data Differential PECL ac-coupled | OUT              |       |
| 14      | RGND       | Receiver Ground                            |                  | 1     |
| 15      | VccR       | Receiver Supply                            | IN               |       |
| 16      | VccT       | Transmitter Supply                         | IN               |       |
| 17      | TGND       | Transmitter Ground                         |                  | 1     |
| 18      | +Tx_DAT    | Transmit Data Differential PECL ac-coupled | IN               |       |
| 19      | -Tx_DAT    | Transmit Data Differential PECL ac-coupled | IN               |       |
| 20      | TGND       | Transmitter Ground                         |                  | 1     |

- Note:


  1. Circuit ground is internally isolated from chassis ground.
  2. Open-Collector outputs, asserted when LD and/or APC function fails.
  3. Disable when high voltage (>2.0V or open).
  4. Should be pulled up with 4.7k-10kΩ on host board to a voltage between 2.0V and 5.5V. MOD\_DEF (0) pulls line low to indicate module is plugged in.
- Solution by pulled up with 4.7k-10kΩ on host board to a voltage between 2.0v and 5.5v. MOD\_DEF (0) pulls line low to indicate module is plugged in.

  LOS is open collector output. Should be pulled up with 4.7k-10kΩ on host board to a voltage between 2.0v and 5.5v. Logic 0 indicates normal operation; logic 1 indicates loss of signal.


### **Physical Characteristics**

### **Outline Diagram**

Dimensions for the device package are given in millimeters.



### **Recommended Interface Diagram**



### **Additional Information**

### **Ordering Information**

| Center<br>Wavelength | Part Number |
|----------------------|-------------|
| 1470 nm              | OGB3356-47  |
| 1490 nm              | OGB3356-49  |
| 1510 nm              | OGB3356-51  |
| 1530 nm              | OGB3356-53  |
| 1550 nm              | OGB3356-55  |
| 1570 nm              | OGB3356-57  |
| 1590 nm              | OGB3356-59  |
| 1610 nm              | OGB3356-61  |

#### **OGB3356-XX GBIC TRANSCEIVER DATA SHEET**

### Contact

For additional information, product specifications, or information about Optocom:

Internet: <a href="http://www.optocom.com">http://www.optocom.com</a>

Email: <a href="mailto:sales@optocom.com">sales@optocom.com</a>

Tel: +1 978 988 8711 Fax: +1 978 988 8722

©2005 Optocom Corporation. All rights reserved. Information in this document is believed to be accurate and reliable and is subject to change without notice. Optocom Corporation will not be held liable for technical or editorial errors or omissions contained herein. Reproduction in whole or in part is prohibited without prior written consent of the copyright owner and no responsibility will be assumed by Optocom Corporation for any infringements of third parties. All other brand or product names mentioned are the trademarks or registered trademarks owned by their respective companies or organizations.