Please read this data sheet before purchasing, and keep it on file for future reference. It contains important information on the product specifications.

Optocom

Optoelectronics Group

OPT1275-3.3
OC-12 Optical Receiver

Data Sheet 2004/5

Contents

General 3 Description

3 Applications

3 Standards Met

Features 3 Operation

3 User Options and Assurance

Ratings 3 Absolute Maximum Ratings

Operating 4 Optical Characteristics 4 Electrical

Physical 5 Outline Diagram

6 Dimensions6 Connections

7 Pin Designations

Safety 7 Optical

7 Electrical

7 Other

Appendix 7 Terms

Additional 8 Contact

Information

^{• 1998-2005} Optocom Corporation. All rights reserved. Reproduction in whole or in part is prohibited without prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract and is believed to be accurate and reliable and may be subjected to change without notice. No liability will be accepted by the publisher for any consequence of its use.

General

Description

The OPT1275-3.3 is a 20-pin DIP fiber optic receiver module which converts lightwaves in the 1310/1550 nm band to electrical data signals at a data rate of 20 to 650 Mbps. The receiver has a hermetically sealed InGaAs avalanche photodiode aligned to a singlemode fiber.

Applications

The device is designed for data communication systems and telecommunication transmission systems over singlemode or multimode fiber.

Standards Met

The specifications met are: the SONET/SDH STS-12/STM-4 interface, the Long Reach OC-12 Optical Parameters (LR-1, LR-2 & LR-3) of Bellcore GR-253-CORE, the Long-haul Recommendation (L-4.1, L-4.2 & L-4.3) of ITU-T G.957, and the monitor alarm requirements of Bellcore GR-253-CORE & ITU-T G.783 and G.958.

Features

Operation

The OPT1275-3.3 optical receiver operates using a single +3 V and an APD bias power supply. The device maintains electrical and optical stability over the specified temperature and voltage ratings.

User Options and Assurance

Operator can measure the photocurrent generated in response to the incoming optical signal. The photocurrent can be calculated based on the voltage drop across an external resistor connected between the monitoring pin 10 and APD supply voltage. If photocurrent measurement is not required, pin 10 should be connected to an APD power supply directly.

Every device is optically and electrically tested to ensure highest performance and reliability.

Ratings

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	$V_{\mathbb{C}}$	0	4.0	V
Photodiode Supply Voltage	V_{PD}	0	V_{B}	V
Operating Case Temperature Range	$T_{\mathbb{C}}$	-40	85	°C
Operating Relative Humidity (non-condensing)	H_{OP}		85	%
Lead Soldering Temperature/Time	T/t		250/10	°C/s
Minimum Fiber Bend Radius	R_{F}	32/1.25		mm/in.
Storage Case Temperature Range	T_{SIG}	-40	85	00°

Operating Characteristics

Optical

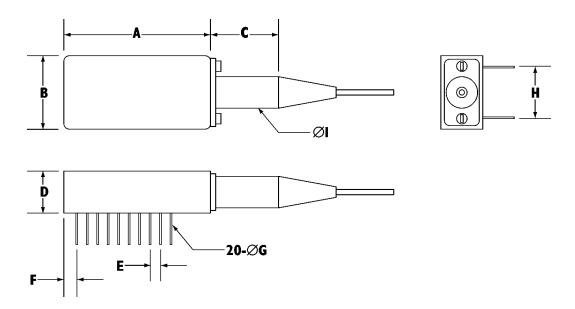
Optical					
Parameter	Symbol	Min	Тур	Max	Unit
Input Wavelength	λ	1260		1580	nm
Measured Average Sensitivity ¹	P_{RL}	-39	-41		dBm
Maximum Input Power	P_{RH}	-5.0			dBm
Signal Detect Threshold:					
Decreasing Light Input	SDT_D			-42	dBm
Increasing Light Input	SDT _I			-42	dBm
Photodiode Responsivity ² (λ=1310 nm)	PD_R	0.7	0.8		A/W
Photodiode Responsivity ² (λ=1550 nm)	PD_R	0.8	0.9		A/W
APD Photodiode Breakdown Voltage	V_{B}	40	65	100	V
Temperature Coefficient of V _B	γ		0.17		%/°C

¹ At a BER of 1 x 10⁻¹⁰ and an extinction ratio of 10 dB or more.

Electrical

Parameter	Symbol	Min	Тур	Max	Unit
dc Power Supply Voltage	$V_{\mathbb{C}}$	3.1	3.3	3.5	V
dc Power Supply Current	Iα		110	160	mA
Output Voltage:1 Low High	V _{OL} V _{OH}	-1.84 -1.10	-1.8 -0.9	-1.62 -0.90	V V
Output Rise/Fall Time	t_R/t_F		350	400	ps
Output Flag Voltage: Low High	V _{fl} V _{fri}	-1.84 -1.10		-1.62 -0.90	V V
Output Data Current: Low High	Ια Ι _{ΟΗ}		5 20	50 50	mA mA
Output Flag Current: Low High	I _R I _H		10 10	15 15	mA mA

Photocurrent 1 = Responsivity x Mean Power.


Operating Characteristics - continued

 1 Output measured from V_{CC} with 50Ω load to [V $_{\text{CC}}$ - 2.0] V

Physical

The device package conforms to the 20-pin DIP outline shown below.

Outline Diagram

Physical - continued

Dimensions

	Т	ур
Dimension	Inches	Metric (mm)
A	1.300	33.0
В	0.635	16.13
С	1.22	30.99
D	0.365	9.27
E	0.100	2.54
F	0.110	2.79
ØG	0.018	0.46
Н	0.400	10.16
ØI	0.236	6.00

An assigned serial number in both barcode and human readable formats appear on the device.

All markings and labels are permanent and meet the requirements of MIL-STD-883C-2015.7.

Connections

The pigtail consists of a singlemode (SM) fiber with an 8 μ m core. The outer jacket has a nominal 900 μ m diameter and is terminated with an ST[®]*, FC, or SC Connector. The minimal pigtail length is 1 meter (39.4 inches) long.

 $^{^*\}mathrm{ST}^{\scriptscriptstyle \otimes}$ is a registered trademark of AT&T

Physical - continued

Pin Designations

Pin	1	2	3	4	5	6	7	8	9	10
	GND	GND	GND	GND	NC	GND	DATA(+)	GND	DATA(-)	PD Bias
Pin	20	19	18	17	16	15	14	13	12	11
	NC	NC	NC	NC	GND	GND	FLAG(-)	GND	FLAG(+)	V_{cc}

Safety

Please embrace all customary precautions & discretion while handling this device.

Optical	Avoid direct eye exposure to laser beam projection area or a broken fiber under operation.
Electrical	Warning against excessive overvoltages or current surges as these may cause failure or electrical shock.
	Solder leads to electronics entirely so as to eschew short circuits.
	Solder or plug in device while power is turned off.
Other	Avoid storage above maximum temperature rating & other extreme conditions.
	Avoid device disassemblement as damages may be incurred.
	Avoid excessive force to fiber pigtail and bending beyond a 30 mm radius.
	Take normal handling precautions as for all electrostatic sensitive devices.

Appendix

Terms

BER: Bit Error Rate

SD: indicates the presence of an incoming signal level that has a workable BER

GND: Ground

NC: not connected

Additional Information

Contact

For additional information, product specifications, or information about Optocom:

Internet: http://www.optocom.com

Email: <u>Info@optocom.com</u> Tel: +1 978 988 8711 Fax: +1 978 988 8722